Complexes of **⋈**– Amino Succinic Acid with Some Metal lons

Abstract

The complexes \ltimes –of amino succinic acid (*LH*₂), *C*₄*C*₇*ON*₄ with some metal ions $(Ni^{2+}, Cu^{2+}, Co^{2+}, Mn^{2+}, Fe^{2+} and Hg^{2+})$ of the type ML. H₂O and with Cr^{3+} of the type ML₂ have been prepared and characterised on the Basic Of their Elemental analysis, ir, Electronic And Magnetic Studies. The Ni(II)- and cu (II) - complex are square planar, Co(II), Mn(II). Fe(II) and Hg(II)-complexes are tetrahedral but CrL₂ is octahedral. only Ni(II)- and Hg(II)- complexes are diamagnetic, while others are paramagnetic.

Keywords: Ligand, Hybridisation, Liner, Vanished, Spectrum, Deprotanation, Attributed, Tentative, Coordinated

Introduction

In our earlier work [1] the complexes of Ni (ii) and Cu (ii) with N-Phenyl Glycine amide - P - Arsenic acid have been reported.Our present work deals with the complexes of \ltimes –amino succinic and with metal ions. **Manterials**

NiSO₄. 6H₂O (E.M.), CuSO₄. 5H₂O, CoCl₂. 6H₂O, HgCl₂ and CrCl₃. $6H_2O$ (all B.D.H.) and \ltimes –amino succinic acid (Loba Chemic grade) were used in the present investigation.

Physical Measurements

Infrared spectra of the ligand and complexes in KBr phasein the range $4000-200 cm^{-1}$ were studies using Perkin Elmer Spectrometer no. 577. The uv spectra of complexes in methanolin the range (850-200) nm were recorded on uv visibleSpectre-pothometer Hitachi-320.The magnetic moments were determined using Guoy's balance.

Aim of the Study

The aim of investigation describe to it's the Ni(II)- and cu (II) complex are square planar, Co(II), Mn(II). Fe(II) and Hg(II)-complexes are tetrahedral but CrL₂ is octahedral. only Ni(II)- and Hg(II)- complexes are diamagnetic, while others are paramagnetic.

Experimental

Ligard Solution

0.2M ligand solution wasprepared by dissolving its 2.66gmin 50 ml ethanol and diluting with warm distilled water to 100ml.

Standard Solution of Metal Ions

0.1M solutions of the metal ions were used in the presentwork.

Preparation of Metal Complexes

Metal ions (1 mole) were mixed with reagent solution (1 mole), (2 moles in case of Cr³ions) separately with constant stirring, followed by drop wiseaddition or 2MNaOH solution[2M NH₄OH solution to Ni²⁺ ions]. The precipitate formed in each case was filtered washed and dried in air. **Results and Discussion**

Complexes are soluble in methanol and are decomposed by dilute mineral acids. The colour of complexes, pH values of their formation, analytical data, magnetic moments and absorption on peaks in the uv spectra are incorporated in table 1.

Dazy Kumari Lecturer, Dept. of Chemistry. Urdu College, Gopalganj, India

P: ISSN NO.: 2394-0344

E: ISSN NO.: 2455-0817

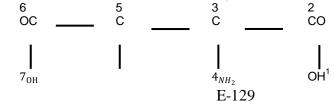
VOL-4* ISSUE-1* (Part-2) April- 2019 Remarking An Analisation

Table-1											
Complexes of Metals with ⊮-	pH of formation	Elemental Analysis	% C found	% H Found	% N Found	μ eff	UVspectral value nm				
amino		Colour of	(Cal)	(Cal)	(Cal)	value	λ max				
Succinamic acid		complexes									
Ni (II)	7	Yellowish	29.70	3.68	8.61	00.00	512F				
		Green	29.74		(8.50)		476S				
			(27.74)	(3.71)	(8.67)						
Cu (II)	6	Violet blue	29.25	3.60	8.54	1.85	487S				
			(29.30)	(3.66)							
Co (II)	7	Blue	29.60	8.65	8.60	3.89	526				
		(Pinkish)	(29.62)	(8.71)	8.67		476S				
Mn (II)	8	Pinkish	30.00	3.70	8.70	5.8	465				
		Yellow	(30.10)	(3.76)	8.77		452				
Cr (II)	9-10	pale	21.75	2.70	6.30	3.85	512 S				
		Green	(21.81)	(2.76)	(6.36)		487 ms				
							380 bs				
Fe (II)	7	green	29.00	3.70	8.70	4.90	220 ms				
			(30.01)	(3.75)	(8.78)						
Hg(II)	9-10	white	20.60	2.50	6.00	00.00	505 s				
			(20.66)	(2.58)	(6.02)		440 s				

Magnetic Moment

The Ni(II)- complex is spin paired (diamagnetic) and Square planar through dsp^2 hybridisation. For the Cu(II) and Co(II)-Complexes slightly greater magnetic moments than spin only values are due to Jahri's Teller effect and spin orbitcoupling respectively. The Fe(II)-complex is paramagnetic and moment value corresponds four unpaired electrons. The Hg(II)- Complex is diamagnetic but magnetic moment ofCr(III)-complex corresponds to three unpaired electrons and it possesses probablyOh symmetry.

Electronic Spectra


The absorption peaks at 476 and 512 nm in the spectra of Nil. $H_2O_{assignable}$ to $1A_{1q} \rightarrow 1B_{1q}$ I.R.SPECTRA

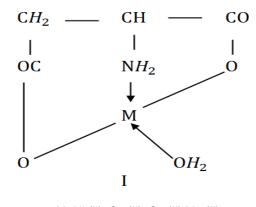
A few relevant ir bands are places in table 2.

transition suggest it to have square planar symmetry. The peak at 487 nm in CoL. H₂O probably due to 2B_{1a} 2E_{1g} transition shows it to be square planar. The intense band at 526 nm in the spectrum CoL. H₂O is due to $4A_2(F) \longrightarrow 4T_1$ (P) transition [2]. In HgL. H₂O, peaks are observed at 505 and 440 nm which cannot be assigned correctly due to lack of evidences in literature. The peak at 220 nm in the spectrum of FeI. H₂O may be assigned to 5E \longrightarrow 5 T _{2g} transition. The absorption peaks at 512, 487 and 380 nm in the spectrum of CrL₂, may be assigned to the transitions from $4A_{2g}(F)$ to $4T_{2g}(F)$, $4T_{1g}(F)$ 4 and $4T_{2g}(P)$ states respectively in harmony with oh symmetry.

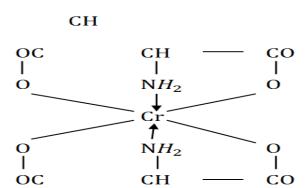
TABLE-2												
LH_2	Nil.H ₂ O	Cul.H ₂ O	CoL. H ₂ O	MnL. H₂O	CrL ₂	Fel. H ₂ O	HgL. H₂O	Assignments				
$_{\rm cm}-1$	$_{\rm cm}-1$	$_{\rm cm}-1$	_{cm} -1	$_{\rm cm}-1$	_{cm} -1	_{cm} -1	_{cm} -1					
cm^{-1}	cm^{-1}	cm^{-1}	cm^{-1}	cm^{-1}	cm^{-1}	cm^{-1}	cm^{-1}					
	50S	5580S	3615	3590vs		3585	3600S	-0-H Stretch				
3408	3380m	3340m	3340bs	3350m	3340m	3345m	3385m	-v (NH ₂)				
2930								vs(COOH)				
1650ws	1600	1600	1625bs	1620bs	1610bs	1615ms	1630bs	v(C=O)				
1620ms	1580s	1565s	1570s	1570s	1560s	1550s	1590s	(∂ NH ₂)				
1330	1390m	1390s	1380s	1385s	1350ms	1380s	1390s	vs (COO)				
	1410m	1440mb	1395vs	1410m	1385m	1440s	1450s	vas (COO ⁻)				
	610ws	615s	610s	615s	605m	610m	620ms	Pr(NH ₂)				
	550m	510s	530ms	520ms	490m	480m	550m	V(M-N)				
	340 S	435S	425m	410M	450m	430m	450m	V(M-O)				

The present ligand is tridentate and contains the following system with 1, 4, 7 binding sites.

P: ISSN NO.: 2394-0344


RNI No.UPBIL/2016/67980

E: ISSN NO.: 2455-0817


The broad sharp band with its centre at 2930 cm⁻¹ in the spectrum of ligand assigned to Vs(COOH) disappears in spectra of all complexes, showing deprotanation by the metal ions [2,3]. The bands at 1600-1630 cm⁻¹ in the spectra of lignd and complexes may be attributed to V (C=O) group. The sharp bands at 1450-1395 cm⁻¹ and 1390-1330 cm⁻¹ in the spectra of ligand and complexes may be attributed to V(C=O) group. The sharp bands at 1450-1395 cm⁻¹ and 1390-1330 cm⁻¹ in the spectra of complexes may be assigned to Vas (COO⁻) and Vs (COO⁻) respectively [3]. The medium sharp band at 3410-3408 cm⁻¹ due to V(VH₂) in the spectrum of ligand [4, 5] showed

VOL-4* ISSUE-1* (Part-2) April- 2019 Remarking An Analisation

downwards shift to 3340-85 cm⁻¹ in complexes, showing donation through N of NH₂ group. Several sharp overtones in the spectrum of the liugand are found vanished in the spectra of complexes. The sharp bands at 550-490 and 450-340 cm⁻¹ in the apectra of complexes only suggest the formation of M-N and M-O bonds [6, 8]. On complexation V (C-O) appears to be increased in intensity to the sharp band at 3600-3550 cm⁻¹ in spectra of ML. H₂O complexes suggest the presence of coordinated water molecules [4]. On the basis of above evidences, the following tentative structures of complexes may be proposed.

M=Ni (II), Cu (II), Co (II) Mn (II), Fe (II) and Hg (II).

Ш

Acknowledgements

Thanks are due to Dr. U.N. Sharma, head of chemistry Rajendra College Chapra, J.P. Univesity Chapra for valuable suggestion.

 CH_2

Reference

- Kumar, M., Mahto, H.R., Sharma, Vibha and Sharma, T., J.Indian Chem.Soc., 66, 21, 73 (1989).
- Mahto, C . B. and singh, Mrs. Indu, Acta Cienia Indica, Vol. 18, C4(1992).
- Mahto, C.B. and Kumari, Fulwanti, Acta Ciencia India, Vol. 16, C3 (1990).
- Mc Aulliff, C.A. and Perry, W.D., J.Chem.Soc., 634 (1979).
- Subhas Satish, Dr. Kudeshia, Spectrum Analysis, Pragati Prakashan, P. 226 (1972-73).
- Sharma, Y.Ř., Elementary Organic Spectroscopy, p. 122 (1989).
- Nakamato, K., J.Chem. Phys., 42, 2590 (1965).
- Rastogi, V.K. and Saxena, R.C., Khotnala, A.K. and Rastogi, J.N., J.Indian Chem. Soc., Lll, 10, 897 (1994).